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2

| 2
= l-ot 1 -‘/1-SE(&L?

(4.11) r = ——

1+ Vl-oi 1 +-V1-SE(JL)

Here F 1is the adaptive factor discussed in Section 3 for the adaptive SSOR-CG
procedure.

Having decided to change SE(éL) we let
o 1 Sll
4.12) [sE(aw)) ]new max(sE (.sw) ’ SE('Bw) s E:(.sw))

where S'(8) and S"(8 ) are determined as follows. To get S'(8) we solve
E" w B E" w

the Chebyshev equation

8™l 2 | gl

(4.13) = .
B, 1P 1+P

where r is given by (4.11) and

2

1 -V1-(S_ (8)/SL(8))
(4.14) - E o b

i - [
1 +V1- (S;(8)/51(8))
We compute SE(%D) by the Rayleigh quotient

ws ™ s 5™
@D

(4.15) Sus ) -

n n
Having computed the new value of SE(Jh) we let s = n and then use

(4.5)-(4.8) to continue the iteration process.

.
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The overall computational procedure is illustrated in Figure 4.1. As in
the case of the SSOR-CG method, we determine the pseudo-residual A(n) for the
SOR method for each iteration as well as the pseudo-residual S(n) for the SSOR
method. This saves matrix/vector multiplications by W. At the beginning of
each iteration we compute A(n) and S(n), Usually this is done in a straight-
forward way, but if n = s+l we use a special procedure as described below. We
then carry out our stopping test. We use (3.18') if a good estimate ME(B) is
available for M(B). Otherwise we use (3.20').

If the process has not converged, we test whether SE(éL) should be
changed. If the test (4.9) is satisfied or if n = 0, we compute (SE(e.P:J‘))new =
max(SE(ﬁp), Sé(%ﬁ), SE(%I)) where Sé(%ﬁ) is the solution of the Chebyshev
equation and SE(&L) is the Rayleigh quotient (4.15)., With the new value of

and u(n+1)

SE(%L) bl Pn+1’ Yn+l’

and are ready for the next iteration.




<o

30

We use a special procedure whereby one can avoid matrix/vector multiplica-

tions by W and, at the same time,can compute the Rayleigh quotient s;:'(.s) each
w

time SE (csw) is changed without an extra matrix/vector multiplication. When

we decide to change SE ('Bw) we compute the vector

%.16)

It can be shown that

.17

Thus, for SE(«Bw) we

.18)

where

@.19)

~(n+1)

@ , 5@

= u

g(n+1) AT Ga(n+1) PR G(n+1) ol s(n).
w w w

have by (3.11} (uhich holds for BC'D ana XSUEL

(n) (n)
W™, W8 87 piaA®  pix(eel))
(w6 (n) ’WB(n) ) 2 (D%A(n) i D%A(n) )

Sg (r.Bw) =

z(n+1) 2 Ga(n+1) ] k(F) 54 aa(n+1).
w w

We note that to get the Rayleigh quotient Sg(aw) we have essentially

had to do an extra SSOR iteration, However, we can recover this by using a special

procedure to get A(n)

that if n = s+l then

@ .20)

and S(n) on the next iteration. Thus it can be shown

s _ Yn'é;(n) £ (1-y) 5(n-1)

A(n) - Yng(n) + (1- Yn)A(n'l)




m
(?s aanpasoigd
IS-490SS (M paxtd) 9aTadepy A1IeT3ied °1°4 3Ind13

(™I < ToyIs < "oy Ig) xew

(o3

s
0=u3T Amvmm

0< U JT (41°4) pue (c1°%) 'ba asyskqoyp £q (@)is

‘%! %Y _ s
(%t )20 (€% £ o 0
= i ¥ = . ;—...T.ﬁ E
o T @ ~A~+cvu¢.ﬁﬁ+=vm Ll (i mi ©°y) 49 H+c>
b ™ ™ (L'y) &q " 0
E 3+5\m A A.mvx T (qeu)~ % (1+w)¥ 23ndwo)
@ " @" T ()l
I«
1+u=u
mw.ﬁ e
(6°4) 2en (pa2sn st
¢paBuryd | (,81°€) 3s93
2q_("#)%s prnoys 8uiddo3ls 3T
paxynba1) (g)
m
ou Aaa-vmm
mm»‘Wouc . .dx : a5 &3 s 5 5
ou @™ @ [0 @] ? " @ " |
3sTMIdYyl0 L

m m
(¢ 10 @ @ e W
A = = B

¢do3as (u
148 = W 3T u, u
q-w3 A D+ 84 = )9




32

Fully Adaptive SSOR-SI Procedure

So far we have been considering the SSOR-SI method for fixed «w where we make

an initial estimate SE(éh) for S(éh) and then improve SE(dL) adaptively.
As stated in Section 3, S(éh? is a very slowly varying function of w, and it
is not essential that the value of «w be optimal. Thus it would not be unreason-
able to guess at a value of «, say 1.8, and use the partially adaptive procedure
described above. However, as we show, it is not difficult to improve « as
well as SE(éL? adaptively.

When we let «w as well as SE(ép) be determined adaptively we refer to
the procedure as '"fully adaptive.'" Actually, as in the case of the adaptive
SSOR-CG method considered in Section 3, we work with ME(B), an estimate of

M(B). Also, as in Section 3, we assume that we have an upper bound B for S(LU).
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The overall procedure for the fully adaptive SSOR-SI method is shown
in Figure 4.2, To begin with, we estimate a value of ME(B) such that 0 < ME(B) < M(B)
and also such that P%:(B) < 2@ . We compute « by (2.20) with M = ME(B) and

sp(8) by (2.21).

() ()

At the beginning of each iteration we compute A and 5 We then

apply the stopping test (3.18'). 1If convergence has not occurred, we proceed to switch

@ . Initially, @. @ . However, if at any time «* can be shown to be
satisfactory (using (3.27)) we let @: = @ and from then on we will not consider
changing ME(B). We then apply test (4.9) to see whether ME(B) should be changed.
If so, or if n = 0, we proceed as follows, We compute a new value of SE(éw) as
indicated. The value of Sg(éw) given is the Rayleigh quotient, as was shown in our
discussion of the partially adaptive process. Having found a new value of SE(éw), we
proceed to get ME(B) by (3.28). Then we compute a new « and a new SE(éu\)' We

(n+l)

then compute Pn+1’ Yasl’ and u and are ready for the next iteration,
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5. Numerical results. Several experiments were run for the SSOR method

using the conjugate-gradient adaptive scheme and using the semi-iterative fully
adaptive scheme. The following problem, which we call "model problem P,' was

used as a test case.

(-Au ==-1 in Q

0 on IR

"

(5.1) u

Q= (0,1 x(0,1).

1

Numerical experiments on more general problems, such as those considered in Young

i [19%4] are now being carried out.

The five-point finite difference method was used to generate the matrix

if problem

5.9 Au = b

; for mesh sizes of h = 1/20, 1/40, and 1/80. For these cases the parameters i,

Wy and the bound for S(éal), as given by (2.30), (2.31), and (2.32) (with g = 1/4),

respectively, are shown in Table 1.

TABLE 1
VALUES OF OPTIMUM PARAMETERS FOR MODEL PROBLEM P

h = 1/2 h =140 h=1/80

M .98769 .99692 .99923

wy 1.72874 1.85445 1.92448

S(QD ) .85451 52448 .96151
1

—_————

* . In our test cases, since we were interested in studying the effectiveness
of the adaptive schemes rather than studying effectiveness of stopping procedures,
we generated the exact solution, u, to the problem (5.2) and iterated until the

following condition was satisfied:

-

:
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LBy = X
(5.3) <l o cwn™S

K -
exact Ha”

The adaptive procedures, as described in Sections 3 and 4, were used for
the SSOR-CG and for the SSOR-SI schemes, respectively. The stopping test (5.3)
rather than (2.18') was used in both cases. For the SSOR-SI method only the
fully adaptive scheme was used. No test cases were run using the partially adap-
;(0)
E

tive procedure. For the adaptive process, an initial guess was made for

; S(B). It is necessary that ;éO)S ;, and in the absence of a better guess

;éO) can be set equal to zero. Initial estimates for «w and S(éh) were obtained

from (2.20) and (2.21) using the estimated parameter aéO). The adaptive procedures
of Sections 3 and 4 were then used to correct the estimated parameters.

A non-adaptive process was also used for both methods. In the non-adaptive
process a value of « was chosen and not changed. 1In the case of the non-adaptive
SSOR-SI method a value of S(JL) was used based on (2.21) with ;E replaced by
the true value of ; and with B = 1/4.*

Table 2 gives the results for the adaptive and non-adaptive procedures
where « = .82 was used for the non-adaptive process. (This corresponds to using

(2.20) with ;E =0 and B = 1/4.) For the adaptive cases was initially zero.

HE
The value F = 3/4 was used for the adaptive cases.

For the values given for the adaptive SSOR-CG method, the numbers in paren-
theses correspond to a different adaptive scheme where at least two iterations were

used with each parameter set. The numbers look somewhat better than in the original

adaptive case.

.*Clearly, this procedure is more favorable to the non-adaptive SSOR-SI
method than would be the case if we had used the more reasonable procedure of
choosing a value of QE and then calculating « and a bound for S(8) by (2.18),
letting B = 1/4. o




TABLE 2. COMPARISON OF ADAPTIVE AND NON-ADAPTIVE SCHEMES

Non-adaptive

= .82

(48

*
optimum parameters

Fully adaptive
;éo) -0

Non-adaptive

op timum parameters*

Adaptive

g ? i

SSOR-SI
h=1/20 h = 1/40 h = 1/80
32 67 120
1.7 25 35
28 26 39
SSOR-CG
h=1/2 h = 1/40 h = 1/80
17 28 52
12 17 23
16 (14) 21 (20) 32 (27)

_—

*
See Table 1




Figure 5.1 shows the number of iterations required to satisfy the con-

vergence criteria (5.3) for the non-adaptive SSOR-CG method and for the non-
adaptive SSOR-SI method. In each case a value of w was chosen and the non-
adaptive procedure was used as described above. It should be noted that the

SSOR-CG curve is much flatter than the SSOR-SI curve, and also lies considerably
below the SSOR-SI curve. This indicates that the SSOR-CG procedure is much

less sensitive to choice of w. The advantage of the SSOR-CG method would probably
have been even greater if we had not used the true value of ; in computing

the bound on S(éu) for the non-adaptive SSOR-SI scheme.

The results presented in Tables 3 and 4 show how the parameters 5

HE
and S(8 )E changed during the adaptive process. In the cases considered, the
w

- (0)

initial hp ~ was set equal to zero. It is evident that after only two or three

iterations, good values of the parameters are available through the adaptive

process. Furthermore, even the iterations occurring before the selection of
; : n
the final parameter set are not 'wasted" iterations since the iterant u( )

is being improved, although not as much as would be the case with the optimum

parameters.
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Figure 5.1. Model Problem P. #Iterations vs. w, h = 1/40

Non-adaptive Schemes
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TABLE 3. SSOR-SI FULLY ADAPTIVE
(F  3/4 in all cases)

h 1/
Optimum Value

Iteration No. |1

h 1/40

—rnal

Optimum Value

Tteration No. 1

h  1/80

Optimum Value
Iteration No. 1

" " I

" " 8

e w (&),
.98 769 1.72874 .85451
0 828427 17157
.97851 1.65657 812156
.98 742 1.72621 .853047
Convergence
.99692 1.85445 . 92448
0 828427 17157
.99034 1.75597 .87006
.99633 1.84218 .91785
convergence
.99923 1.92448 .96151
0 828427 17157
.99540 1.82504 .90852
.99896 1.91280 .95543
convergence




41

TABLE 4. SSOR~CG ADAPTIVE
(F = 3/4 in all cases)

L1E s S(‘Bco)E
h=1/20, k=1
True Value .98769 1.72874 .85451
Iteration No. 1 0 .828427 .17157 :
:E " 23 .97851 1.65657 .812156
PR .98 742 1.72621 853047
“ A " 16 Convergence
|h = 1/40, k = 2 '
| True Value .99692 1.85445 .92448
éIteration No. 1 0 .83847 .17157
1 l t "4 .99137 1.77713 871171 !
t , & LA o) Convergence
|
1 th = 1/80, k = 1
E {True Value .99923 1.92448 .96151 ;
Iteration No. 1 0 82847 .17157 ;
1 gkt .99348 1.79784 .89047 {
L e .99881 1.91429 . 94801 j
| o wae Convergence
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°é0) and for various values

Many cases were run for various values of [

of F. Figures 5.2 and 5.3 1illustrate the effect of varying ;E in the adap-

©) is

tive procedure. The solid lines represent the non-adaptive case; i.e., ;E

chosen and the parameters are calculated based on ;éO) and are not changed

(@ is fixed throughout the procedure). The dashed line represents the fully

- (0)
“E

the improved parameter set is calculated. The ordinate represents the number

adaptive procedure; here is specified and all parameters are updated when

of iterations required for convergence and the abscissa is ;éO). The graphs
are drawn for h = 1/40, but these results are representative of all of the
test cases

In general, lowering the value of F means there will be fewer

parameter changes, and setting F closer to unity has the effect of fine-tuning
the procedure. In this case there will be more parameter changes and the final
set should be closer to the optimum values. However, when the parameters are
changed, the convergence rate of the overall method drops off initially and

then gradually increases. Thus, changing parameters too often can have the net
effect of lowering the overall convergence rate. In choosing F, one must balance
the effect of changing parameters against the gain which will be realized from
improved parameters. Figure 5.4 is a graph of the number of iterations required
versus the parameter F for the SSOR-CG adaptive procedure and for the SSOR-SI
fully adaptive procedure. In general, this procedure does not seem to be tao

sensitive to values of F as long as they are not close to zero or to one,
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6. Summary and conclusions. These preliminary test cases seem to indicate

that the adaptive procedures presented in this paper are effective when they are
coupled with both the SSOR-CG and the SSOR-SI methods. It has been shown that for
this problem very few iterations are required to obtain a good set of parameters,
and these preliminary iterations are not wasted, in the sense that the vector
u(n) is being improved on each iteration. The procedures are effective even when
the initial guess of ;E is the worst possible; i.e., Qé0)= 0. It has been
shown that in this case the number of iterations using the adaptive scheme is
not too many more than the number of iterations which would have been required
if the optimum parameters had been known from the start.

These results are preliminary in the sense that numerical experiments have

been carried out only for the model problem P. We are now testing these procedures

on a more general class of self-adjoint elliptic problems.
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